

## **DOUBLE BLOCK AND BLEED BALL VALVE**

### **TRUNNION TYPE**



| PRODUCT RANGE |           |         |         |         |  |  |
|---------------|-----------|---------|---------|---------|--|--|
| SERVICE       | CL150~600 | CL900   | CL1500  | CL2500  |  |  |
| FLOATING TYPE | 1/2"~6"   | 1/2"~2" | 1/2"~2" | 1/2"~1" |  |  |
| TRUNNION TYPE | 2"~24"    | 2"~24"  | 2"~24"  | 2"~12"  |  |  |

#### **DESIGN FEATURES**

- Forged Body
- Flange Connection according. to ASME B16.5
- Face to Face according. to supplier recommendation
- Lever lockable and removable, Gear box operation as Standard. Actuator mounting flanges, unless otherwise specified, are in full according with ISO 5211
- Soft Seat or Metal Seat
- Double Piston Effect
- Vent Connections: Integral Vent Valve— Needle Type Screwed Bonnet or Flanged Bonnet Screwed Vent Valve—Ball Valve

The material is according to ASTM Standard.

Model Denote: EFC=Elite Flow Control | 02=Size in inch | BV=Ball Valve | 1=150Lb | R=RF End | 7=Trunnion, DBB Type.



# **SEAT & SEAL DESIGN FEATURES**

Standard



Low Temperature



**High Temperature** 



### **Optional Seat Selections**

| Material | Operating<br>Temperature | Operating<br>Pressure | Description                                                                                                                                                                   |
|----------|--------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PTFE     | –80~120℃<br>–112~248°F   | 150LB                 | PTFE is a fluorocarbon–based polymer. This material has the lowest operational torques due to its lower coefficient of friction.                                              |
| RPTFE    | –80~120℃<br>–112~248°F   | 150~600LB             | RPTFE(Reinforced PTFE). Properties are enhanced by adding a percentage of filler material to provide improved strength, stability, and wear resistance.                       |
| PCTFE    | –190~120℃<br>–310~248°F  | 150~300LB             | PCTFE is a thermoplastic chlorofluoropolymer, dimensionally stable, rigid, and resistant to cold flow, Very low gas permeation and outgassing, Low deformation under load     |
| PPL      | –45~250℃<br>–49~482°F    | 150~300LB             | PPL (Polyparaphenylene) is an excellent seat material with low coefficient of friction, highly resistant to pressure and temperature.                                         |
| NYLON    | –29~80℃<br>–20~176℉      | 150~1500LB            | Nylon is offered for high pressure applications. The material is ideal for use in high pressure air, oil, and other gas media but is not suitable for strong oxidizing agents |
| MOLON    | –29~130℃<br>–20~266℉     | 150~1500LB            | Molon is a modified Nylon(Nylon+MoS2),It's performance is similar to nylon, but the use temperature is higher than nylon                                                      |
| DEVLON   | –50~150℃<br>–58~302℉     | 150~2500LB            | Devlon is a polyamide with additives. This material covers a wide range of applications while having excellent wear poperties, low friction, and improved impact strength.    |
| PEEK     | –100~260℃<br>–148~500℉   | 150~2500LB            | PEEK is a high performance engineered thermoplastic. It is excellent in water/chemical resistance and it is unaffected by continuous exposure to hot water/steam              |
| Metal    | As request               | 150~2500LB            | Metal seat is usually used for high temperature, wear resistance, impact resistance, granular media conditions                                                                |

## **Optional Seal Selections**

| Material | Operating<br>Temperature | Operating<br>Pressure | Description                                                                                                                                                               |
|----------|--------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EPDM     | –46~150° C<br>–50~302° F | 150~600LB             | EPDM is a type of synthetic rubber, have excellent chemical resistance to a variety of acids and alkalines, but can not resistant to petroleum conditions                 |
| NBR      | –40~80° C<br>–40~176° F  | 150~2500LB            | NBR is typically resistant to mineral oil-based lubricants and greases, hydraulic fluids, hydrocarbons, and water.                                                        |
| HNBR     | –40~80° C<br>–40~176° F  | 150~2500LB            | HNBR (Hydrogenated NBR) has similar media stability to NBR but with significantly better heat and oxidization stability.                                                  |
| HNBR AED | –40~80° C<br>–40~176° F  | 600~2500LB            | HNBR AED are typically used in high pressure applications encountered in the Oil and Gas industry.                                                                        |
| VITON    | –29~200° C<br>–20~392° F | 150~2500LB            | VITON (fluorocarbon) is a fluorocarbon elastomer that is compatible with a broad range of chemicals, Viton offers excellent resistence to aggressive fuels and chemicals. |
| FVMQ     | –60~177° C<br>–76~351° F | 150~2500LB            | FVMQ is a silicone polymer chain ,this material is far more resistent to oils and fules than other silicones.                                                             |